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ABSTRACT

Across the landscape of computing, parallelism within applications is increas-

ingly important in order to track advances in hardware capability and meet critical

performance metrics. However, writing parallel applications is difficult to do in a

scalable way, which has led to the creation of tasking libraries and language extensions

like OpenMP, Intel Threading Building Blocks, Qthreads, and more. These tools

abstract parallel execution by expressing it in terms of work units (tasks) rather than

specific hardware details. This abstraction enables scaling and allows programmers

to write software solutions that can leverage whatever level of parallelism is available.

However, the typical task scheduler is greedy and näıve. Thus, concurrent parallel

processes compete for computational resources, which results in unnecessary context

switches, mis-timed synchronization, unnecessary resource contention, and the asso-

ciated consequences. By providing a mechanism of communication between the task

schedulers, processes can cooperate to more effectively utilize hardware and avoid the

negative consequences of coarse-grained resource contention. This work uses Qthreads

to demonstrate that cooperative allocation of computational resources reduces con-

tention and decreases execution time. The overhead added for the resource allocation

is shown to have minimal impact. Using the Unbalanced Tree Search (UTS) and

High Performance Conjugate Gradient (HPCG) benchmarks, execution time across

concurrent processes shows significant decreases across a range of machines running

a variety of hardware resources and software configurations. Tests also indicate that

dynamic compute-resource allocation provides a clear performance benefit even when
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hardware resources are oversubscribed: when there are more processes than processing

units. UTS tests saw an average of 4.98% reduction in execution time in Linux

compared to Qthread’s yielding option and an 89.32% reduction in execution time in

Apple OS X. HPCG resulted in partitioning reducing execution time by an average

of 22.31% compared to the default Qthreads configuration across all test platforms.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Qthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Other Tasking Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Thread Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Process Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Resource Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Worker Zero Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



2.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Test Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Variance of Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Laptop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Shared Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Dedicated Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Benchmark Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Unbalanced Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Test Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 High Performance Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Qthreads Default Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 UTS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Single UTS Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Three UTS Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 Laptop UTS Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 UTS Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5.1 Desktop UTS Scaling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.2 Laptop UTS Scaling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.3 Shared Server UTS Scaling Results . . . . . . . . . . . . . . . . . . . . . . . 33

ix



5.5.4 Dedicated Server UTS Scaling Results . . . . . . . . . . . . . . . . . . . . 35

5.5.5 UTS Scaling Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 Partitioning with Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 OpenMP and Intel Threading Building Blocks UTS Comparison . . . . . 37

5.8 Coming and Going . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.9 HPCG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.10 Multi-User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Resource Donation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 Worker Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.3 Unshackle Worker Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.4 Benchmarks and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.5 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Implementation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



LIST OF TABLES

4.1 UTS Tree Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Qthreads Default vs Yielding enabled . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Desktop Single Test Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Single Process Partitioning Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Laptop Three UTS Process Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Interspersed Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



LIST OF FIGURES

2.1 Single NUMA region worker assignment . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Two NUMA region worker assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Single process execution with partition, yield, and default options . . . . 28

5.2 Three small UTS test Linux comparison . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Three large UTS test Linux comparison . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 OS X Activity Monitor during tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Large UTS test scaling test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 UTS tests results with both partitioning and yielding enabled . . . . . . . . 36

5.7 OpenMP, TBB, Qthreads partition and yielding UTS comparison . . . . . 37

5.8 Desktop HPCG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 Laptop HPCG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Shared server HPCG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.11 Dedicated server HPCG results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



1

CHAPTER 1

INTRODUCTION

1.1 The Problem

Parallel computing often results in random distributions of work, creating hot spots of

activity, especially when computation is not embarrassingly parallel and includes het-

erogeneous threads and/or processes. As task-parallel programs continue to increase

in prevalence, it is increasingly likely that multiple task-parallel processes live on a

single machine, and even CPU/socket, creating contention for compute resources.

Lightweight tasking alleviates some of the contention by abstracting the under-

lying operating-system-level thread usage to distribute work among a set of worker

threads. However, each instance of a lightweight tasking library typically assumes

it is the only instance on the machine. Naturally, it makes scheduling decisions to

maximize performance based off that assumption. Such decisions are often highly

counterproductive in a shared or even oversubscribed environment.

This leaves the operating system to handle the contention between processes. This

is not unique to parallel processes since many single-threaded, serial processes will also

cause the operating system (OS) scheduler to distribute resources to processes based

on the scheduling policy via time-slicing and context switching. However, because

most OS schedulers treat all schedulable threads as unrelated, they make decisions

that do not fit the needs of parallel programs. Further, because parallel programs
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rely on multiple schedulable threads, they are more exposed to the negative impacts

of unfortunate OS-scheduler decisions.

1.1.1 Context Switching

Pre-emptive context switching is a standard operating-system tool for sharing compu-

tational resources. Processes are scheduled to get a time slice to run and those time

slices are scheduled according to the OS’s scheduling policy. Pre-emptive context

switching is the process by which one process is swapped out of the CPU and another

process is swapped in for each time slice. A context switch has direct and indirect

costs that can degrade the performance of a process.

The direct cost of a context switch is the time to perform the action: save CPU

registers and other process state, flush CPU pipeline and cache, run OS-scheduler

code to select another process, then load and begin execution of the newly selected

process. Indirectly, there will be cold-cache misses as a result of flushing the cache.

Li, Ding, and Shen found the direct cost of a context switch to be 3.8 microseconds,

and found the indirect costs to reach as high as over one-thousand microseconds on

a server with dual Intel Xeons with a 2.0 Ghz clock rate [10].

1.1.2 Jitter

Operating system jitter, also known as scheduling jitter, is delays in processing due

to scheduling of other processes and system interrupts, or, more generally, delays

due to context switching [1]. Due to the time-slicing of the OS scheduler, in parallel

programs this can cause a compounding execution delay related to synchronization.

If processes A and B need to synchronize, and A gets scheduled by the operating

system and reaches the synchronization point, but B does not get scheduled during
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that time slice, then A will continue to wait for the rest of its time slice. Depending

on the type of synchronization, process A may get scheduled repeatedly, with nothing

to do but wait, before process B gets scheduled. When B is run next, it will reach

the synchronization point allowing A to continue, but A is now back in the scheduler

waiting for another time slice. When A is scheduled next, it will continue past the

synchronization point.

Since the impact of jitter depends on the scheduling policy, as well as the dynamic

set of other processes contending for time slices, it leads to inconsistency in execution

time. Furthermore, because this can potentially happen on every synchronization, and

synchronizations can occur between more than two threads, this delay can compound

and drastically alter execution time. What’s more, jitter in one set of threads creates

localized delay, which changes the balance of execution, leading to more jitter effects.

The simple way to reduce the effect of jitter is to yield whenever a synchronization

point is reached, allowing the process to immediately relinquish its time slice. If there

is synchronization mismatch due to jitter, yielding can reduce time spent waiting for

synchronization, by allowing other threads or processes to run. However, this can

backfire. If A and B both reach their synchronization point during overlapping time

slices, they can proceed as normal, but if the processes yield when they synchronize

then both A and B would be waiting until their next time slice to continue, adding

delay.

1.2 Qthreads

Qthreads is an open-source, user-level tasking library developed at Sandia National

Labs that provides a tasking abstraction of hardware. Qthreads’ API includes tasking,
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synchronization, data structures, etc., and is a portable, user-space, shared library

[19].

When Qthreads is initialized, it spawns a number of worker pthreads, or “workers.”

The workers may be grouped, based on a user specification or automatically via

software that reports the hardware topology. Every group of workers is a shepherd,

even if there is only one group. By default, Qthreads attempts to have the number

of groups equal to the number of non-uniform memory access (NUMA) domains, as

determined by its understanding of the hardware.

Each shepherd has a queue of work that its workers pull from to execute. Because

of this, and because NUMA regions frequently map to L3 cache sharing, the grouping

to NUMA regions allows workers to leverage cache locality based on the work in the

queue. In an effort to balance the work between shepherds, and to keep all workers

busy, shepherds can steal work from another shepherd’s queue [16].

This model allows a programmer to create as many lightweight threads as memory

allows, without incurring the typical problems of oversubscribing the hardware, since

the number of OS threads doing the work is matched to the hardware.

Due to the work-stealing mechanism, when workers have no work they wait in a

spinlock. A spinlock, as opposed to yielding or blocking, maximizes responsiveness

when new work gets added to the queue; the worker will likely have much of its time

slice remaining, and can begin processing the work immediately. This is ideal when

it is expected that the queue will not be empty for very long or when there is nothing

else the computer should be doing. The downside of a spinlock-based wait is that

when workers are not processing actual work, they are still using a full time slice and

causing the CPU to needlessly execute their spin loop. When there is only a single

process, this minimizes response latency at the expense of power.
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1.2.1 Oversubscription

Qthreads provides a compile-time option that causes the Qthreads spinlock to yield

its time slice. These yield functions end the thread or process’s current time slice

and move them to the back of the process scheduling queue for their priority. This

allows other threads or processes to run. This is a useful behavior in situations where

it does not make sense to have a process or thread spinning and wasting time, such

as in oversubscribed situations where other threads and processes need the resources.

This has a large impact in oversubscribed situations. Since the aim of this work is to

improve performance in oversubscribed situations, the yielding feature of Qthreads is

the true benchmark to test against.

1.3 Other Tasking Approaches

OpenMP includes a tasking specification that is generally implemented as a set of

compiler directives [17]. The compiler directives generally link a shared library for

the runtime, which uses environment variables as a way to control and configure

execution. OpenMP is incorporated with many popular compilers. Both the compiler

directives and environment variables provide a significant level of “tunability” in

applications, but in practice typically requires tuning for each machine configuration

to get the best performance, which can involve changes to both the source code and the

environment variables, and is static for the lifetime of the application’s execution. The

GNU OpenMP implementation has dynamic teams that limits the number of active

threads in an OpenMP application to cooperate with other OpenMP applications

to avoid or minimize the effects of oversubscription [18]. Similar to this work, the

dynamic teams use shared memory to give each process information about how many
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processes are running and the implementation of dynamic teams lies entirely inside

the OpenMP shared library. However, dynamic teams uses a constantly polling

“watchdog” for monitoring the shared data segment, uses locking mechanisms on the

shared data segment, and has additional restrictions imposed due to the OpenMP

specification.

Intel Threading Building Blocks (TBB) [6] is a tasking library similar to Qthreads

provided by Intel. TBB uses a shared library and associated API to give programmers

an abstraction of tasks from threads to provide performance and task scalability.

Intel’s documentation of TBB lays out the same core problems that this work is aimed

at addressing [7]. It implies that TBB does not mitigate compute resource contention

across processes and that Intel leaves users of TBB to mitigate these issues either

through programming or control of the run-time environment.

1.4 Related Research

The concept of partitioning work across threads or processes is not new, and is

central to most parallel programming. Partitioning hardware resources for multiple

applications is not as common on a single machine.

Nesbit et al. broach the subject of resource management on multicore machines,

but approach it from a system level. They propose a concept of Virtual Private

Machines (VPM), where each application has its own VPM providing the application

a share of memory, processing, etc. [15]. The VPM concept provides virtual hardware

resources based on the application providing a quality of service objective (QoS).

The QoS is used generate the resource assignments. This clearly requires operating-

system-level implementation, and has significant overhead to generate and manage the
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VPMs. One benefit is that the VPMs can provide an additional level of sandboxing

for applications, siloing them to prevent system instability as a result of misbehaving

applications.

Liu et al. suggest space-time partitioning, which virtualizes partitions then schedul-

ing at the partition level [11]. Similar to the VPM approach, this requires operating-

system-level implementation, going so far as to propose all scheduling is done at the

partition granularity, even the OS services, and a context switch effectively becomes a

partition switch. Tessellation is what they call the kernel that implements partitioning

and allocation, as well as provides an API allowing programmers to pin threads to

specific cores and specify virtual-memory translations. They describe the possibility

of having an application span multiple partitions and providing an inter-partition

communication method, though they appear to mean simply that multiple applica-

tions can interact across partition boundaries. The concept of scheduling partitions

obviously brings a lot of challenges, an overhaul of OS scheduling and design, and an

additional programming paradigm.

Iancu et al. argue against partitioning, instead looking at oversubscription to

increase throughput [4]. They argue that synchronization granularity is the de-

termining factor of performance in oversubscribed environments: smaller synchro-

nization intervals degrade performance while larger synchronization intervals are less

susceptible. However there are some nuances to their claim, one being that they must

enforce an even distribution of threads across cores at startup or the operating system

load balancer will cause performance degradations. Similarly, their oversubscription

tests are for a single application that oversubscribes its threads or, in the case

of MPI, processes. Both of these conditions preclude concurrent, heterogeneous,

parallel-application oversubscription from fitting into their results.
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CHAPTER 2

IMPLEMENTATION

The goals of the implementation are to be as efficient as possible to minimize overhead

and maintain Linux and Unix compatibility. Additionally, the implementation keeps

in line with Qthreads use as a userspace-only shared library. This is worth mentioning

because it would be far easier to implement these features inside the operating system

kernel. For example, the Qthreads code could be a single runtime, directly handling

the resource allocation instead of relying on inter-process communication. This would

be more efficient since shared memory would not be necessary but would reduce the

portability of the library. Or there could be an OS service or daemon that handles

errors and resource allocation.

2.1 Design Overview

The purpose of this implementation is to improve execution time and more efficiently

utilize computation resources when a system is oversubscribed. To do this, the

processes need a way to communicate so they can cooperatively partition the available

computational resources. When a process initializes Qthreads, the process will open

a section of shared memory that contains information about other Qthreads processes

running on the system. The new process will notify all the other processes that it is

present and then do a partitioning of the computational resources. When a process
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receives a notification of a new process, it will repartition based on the updated

information in the shared memory. When a process finishes, it will update the shared

memory section to remove itself and notify the other processes, which will repartition,

allowing them to reclaim the resources used by the process that is finishing.

2.2 Thread Liveness

Central to the concept of friendliness across parallel processes is to have only the

threads allocated for a process active. The goal is to maintain the sets of inactive and

active threads such that the union of the active threads across processes is all threads,

and the intersection of the active threads across processes is the empty set. The only

exception being thread zero, which is the parent thread for a Qthreads instance, so

it is left active as a safety precaution.

Qthreads has inactive threads that use a spinlock for inactivity. For the general,

single process purpose of Qthreads, a spinlock is ideal because it allows for the thread

to become active as soon as possible within its scheduled time slice. Since there is

little resource contention with a single process, a spinlock using its full time slice and

essentially doing nothing harms power usage and little else while giving the benefit

of being maximally responsive. However, multiple processes using a spinlock will

maintain the negative traits of relying on the process scheduler and context switching.

This implementation eschews the spinlocks in favor of I/O blocking, since it is

expected that inactive threads will remain inactive for longer periods of time. So

quicker transition from inactive to active is traded for less intrusive inactive thread

behavior. Since I/O operations can take a lot of time, threads that make blocking

I/O calls are removed from the process scheduler so they no longer receive time
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slices. Once the data for the waiting process/thread is available, it signals the

kernel that the data is ready and the kernel puts the waiting process/thread back

into the process scheduler. Since the process/thread is not being scheduled during

the time it is waiting, this reduces context switching and wasted time slices. The

reduction in context switching in turn improves performance when it is expected that

the process/thread will be waiting for longer periods of time and thus added delay

between the signal to the kernel and the process/thread getting its scheduled time

slice isn’t as important.

In this implementation, a pipe is used for the blocking I/O call. To bring a thread

out of the inactive pool, a single byte is written to the pipe ending the blocking read.

However, to avoid potential for a locked system where a blocking write is called but

the thread is not in the inactive pool, and thus not waiting to read, writes to the pipe

are non-blocking calls. Using a mutex would be largely equivalent to using a pipe,

since it would also block, remove the thread from the scheduler, and incur a signal

upon unlocking, but has portability challenges.

2.3 Process Communication

There are two common ways for processes to communicate: message passing and

shared memory [9]. Message passing is very broad and can range from signals to

pipes to sockets. This implementation effectively uses both message passing and

shared memory as a means to allow asynchronous message passing via signals and

the data delivered via shared memory segment.

The Qthread processes use shared memory to communicate necessary information

to facilitate the partitioning of computation resources. Shared memory is powerful,
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but still very restrictive in its usage compared to memory usage within an application.

Since process memory is typically protected from access by other processes, it is not

possible to put function pointers in the shared memory to allow a process to call a

function into another. Even further, because virtual addresses are different for each

process, it is not possible to reliably use pointers across processes for data within

the shared memory. Due to these limitations, the partitioning implementation uses a

combination of shared memory and signals.

The shared memory portion of the implementation stores the dynamic resource-

allocation data structure that has a 64-bit unsigned integer to count active processes

and an array of 64-bit signed integers to be used to provide data about the process,

hereafter referred to as the “process array.” The initialized size of the array is

511, which, combined with the 64-bit active process count variable, keeps the data

structure inside a single 4-kilobyte memory page.

Entries in the process array use an encoding to provide information about the

process. The encoding uses the most significant bit (MSB) to indicate if the process

is in need of additional resources. This allows a simple sign check to determine

if it needs resources. After the MSB, the next 31 bits are available for extending

the implementation or adding functionality. The final 32 bits are the process ID,

which provides a unique identification, as well as the means to send signals to other

processes. If a system uses 64-bit process IDs, then the sign and extension space could

be eliminated or moved to a secondary 32 or 64-bit integer. The code in Listing 2.1

shows the definitions of the shared memory section and bit masks.

Listing 2.1: Shared memory definitions

1 #define MAX_FIM_PROC 511

2 // procs encoding:

3 // 63 status
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4 // 32:62 mailbox

5 // 0:31 pid

6

7 // bit encodings

8 #define FIM_MSB_0 0x7FFFFFFFFFFFFFFF

9 #define FIM_MSB_1 0x8000000000000000

10 #define FIM_LOW 0x00000000FFFFFFFF

11 #define FIM_HIGH 0xFFFFFFFF00000000

12

13 typedef struct fim_t {

14 uint64_t num_procs;

15 int64_t procs[MAX_FIM_PROC ];

16 }fim_t;

Shared memory provides the necessary data sharing, but processes are not aware

of changes to the shared data unless they are monitoring the shared data state. To

notify all the processes of changes to shared memory, the user defined signals, SIGUSR1

and SIGUSR2, are used to check if a process is still active/alive (see Section 2.6) or to

repartition (see Section 2.5), respectively.

2.4 Data Protection

Using shared memory means that all participating processes have access to the shared

data structure. Consequently, there can be a race condition when updating the shared

data. Any code that updates the shared data structure is considered a “critical

section” and needs protection for multiple simultaneous accesses.

The common method for protecting data is a mutex or semaphore, both part of

the POSIX specification [13][12]. Mutexes and semaphores allow a programmer to

lock a section, blocking access to other threads and processes, until the thread(s)

or process(es) complete their execution of the critical section. These are common

in multi-threaded programming in C. However, to provide mutual exclusion across

processes, the mutex or semaphore must also reside in the shared memory section.
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While a mutex or semaphore may be necessary in cases where the critical section is

multiple instructions, they can hurt performance and can introduce the possibility of

deadlocks if not programmed carefully.

An alternative to locking the data structure is to modify it only using atomic

operations. This approach is viable as long as every possible state the data structure

may be in is legal and coherent. Such operations can often be done with compiler

built-in functions depending on the target processors [2]. Atomic operations provide

common simple manipulations such as add or subtract, which are performed on the

data atomically with the option to return either the new value or the old value

depending on which atomic function is used. Beyond these simple operations, some

additional atomic operations are provided, specifically atomic compare and swap

(CAS). CAS operations take a pointer to the data being worked on, as well as an

old value and a new value. If the data in memory is equal to the old value, then

it is set to the new value, otherwise the data is not modified. Since the data is not

modified if it is not equivalent to the old value, this provides safety in the case where

another thread modified the data first.

Using a lock-free design for the partition data structure allows the implementation

to completely avoid using blocking mechanisms while still preserving data integrity.

When a process starts, it atomically increments the active process counter then

iterates through the shared array until it finds an empty spot (zero value) and

attempts a CAS operation. If the CAS is successful, the rank for that process is

set; otherwise, it continues iterating and tries again on the next empty spot. If there

is not an empty slot, then it will keep iterating over the shared array until the next

empty slot becomes available. Alternatively, it could abort using the partitioning

and revert to the standard Qthreads behavior of keeping all workers active at the
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cost of the additional oversubscription on all processing units. With the current

number of slots, how such an occurrence is managed is unlikely to have a significant

impact because at that level of oversubscription the system will have already severely

degraded performance.

2.5 Resource Partitioning

Partitioning the resources calculates the number of processing units each process will

have based on the total number of both processing units and processes. Each process

determines its rank, or relative position in the process array, compared to the other

processes and calculates its portion of processing units using its rank. Partitioning

reduces the overall amount of parallelism available by reducing the number of active

workers, but in exchange provides each process with a set of workers with far fewer

processes competing for the associated computational resources.

In cases where there are more parallel processes than processing units, the pro-

cesses each get two workers: processing unit zero and one calculated based on the

process rank. The process may be sharing its calculated processing unit with another

process whose rank results in the same processing unit being calculated, and zero is

shared by all the parallel processes. This is still a large reduction in contention for

resources, however it is also a large reduction in available parallelism.

Once a process has added itself to the shared memory data structure, it broad-

casts SIGUSR2 to all other participating processes, which initiates a new partitioning

calculation for all signaled processes. Since this is an expensive operation, it only

occurs when a process starts and when a process terminates.

The repartition scheme checks if the calculated number of resources is less than
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Figure 2.1: This is an example processing unit assignment for a single NUMA region
configuration with three processes on an eight processing unit machine. Each circle
is a process and the number is the process id, squares are processing units.

Figure 2.2: This is an example processing unit assignment for two NUMA regions
with three processes on an eight processing unit machine. Each circle is a process
and the number is the process id, squares are processing units.

one and ensures that every process retains at least one worker, plus worker zero.

The system can handle more processes than processing units because the shepherd

and worker indices are calculated such that after the worker-process relationship is

one-to-one, processes will be oversubscribed incrementally and in order of the worker

ID, as opposed to oversubscribing all processing units equally.

Repartitioning is disruptive to running processes because it can cause each pro-

cess’s set of workers to change, resulting in a cold cache, additional signals in the
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system, and CPU cycles spent on repartitioning instead of the application. When a

worker is disabled, it does not immediately go inactive because it may be currently

processing work. It is likely that for workers that stay active for a process through

a repartition that the deactivation and reactivation flags will happen in close enough

succession that the thread will never actually go inactive and will be unaffected by

repartition thrashing.

The partitioning attempts to keep the workers for a process grouped together,

giving them a higher probability of belonging to the same NUMA region, and thus

able to take advantage of cache locality. The grouping is achieved by using the process

rank and the number of shepherds and workers. First, the number of workers for each

process is calculated by taking the total number of workers and evenly dividing it by

the number of active processes. If there is a remainder from the division, x, the first

y processes, where y’s rank is less than x, receive an additional processing unit. See

Figure 2.1 for a single-shepherd resource allocation and notice that processes 1 and 2

have three processing units while process 3 has two. The number of workers is then

used with the process rank to calculate the shepherd and worker indices and then

activates that worker and does the same calculation for each of the process’s workers.

Qthreads calculates the shepherd and worker for a worker’s ID number in a round

robin disbursement to the NUMA regions. Figure 2.2 shows how a two-NUMA-region

system would be allocated. Because of the round robin disbursement of processing

units, processing units for an individual process are going to be split across NUMA

regions. This means the benefits of caching among processing units may be reduced.

This also increases the probability that a process’s threads may be moved across

NUMA regions during a repartition, which could result in additional cache-miss

penalties. Updating the worker distribution relating to NUMA regions to align better
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with the partitioning scheme is future work (see Section 6.2.2).

2.5.1 Worker Zero Constraint

Figure 2.3: An example partitioning with four processes, eight processing units
(labeled W0-W7), and the resulting oversubscription on worker zero.

Complicating the partitioning worker assignments, every process must keep worker

zero active. This is due to the design of Qthreads, which uses the parent thread as

one of the workers. Since the parent thread is a worker, the execution of any code

from the parent application becomes a task. However, in order for proper shutdown,

the context of the parent thread must return to the originating worker. The parent

task cannot stay on worker zero if worker zero is disabled, since the parent task will

never run, resulting in a potential deadlock. This means that worker zero is always

oversubscribed by the number of processes using Qthreads (beyond any additional

oversubscription happening on the system). Figure 2.3 shows an example partitioning

with four processes, eight processing units, and the resulting oversubscription on

worker zero. This is a significant bottleneck on this implementation. Attempts to

allow disabling worker zero resulted in the stack of the parent thread getting corrupted

after the task was returned to worker zero (see Section 6.2.3).
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2.6 Error Handling

Error handling has many challenges when dealing the multiple processes and shared

memory. Without a centralized process, detecting if a process is still running is

difficult and if a process crashes without triggering a repartition then the resources

allocated for that process will not be reclaimed until a different process initiates a

repartition or another process attempts to send the crashed process a signal.

One option is to create a daemon that checks each process periodically to ensure no

one crashed and adjust the shared data structure accordingly. A daemon is a relatively

robust option, but would require additional resources since it would be a standalone

process. A daemon would need access to the shared memory section, or could replace

it as a centralized mechanism for communication, but messages would still be signal

based. Additionally, a daemon adds an additional layer to the communication: if

process C starts, it would need to communicate to the daemon that a repartition

is necessary and the daemon would then broadcast the message to all the other

processes. Contrast this with process C starting and directly broadcasting its arrival.

A daemon would also need a schedule to check the processes.

A second option is to have each process check on the other processes on a time

interval. This would likely be in the form of an alarm, which introduces additional

signal handling and processing into the system. This is very similar to the daemon

approach but removes that daemon layer of message passing.

A third option, and the one implemented, is a passive check. Whenever a process

touches the shared memory, it will also send a signal to every process with a non-zero

entry in the process array. If the signal fails, then the process is assumed dead and

its entry is removed from the process array. Similarly, any time a process is sent a
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signal, it doubles as checking that the process is still alive. This approach minimizes

the overhead but could potentially allow for resources to go unused until the next

process starts or finishes.
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CHAPTER 3

TEST MACHINES

3.1 Variance of Environments

The problem and solution detailed in Chapters 1 and 2 were run on several different

machines and software environments. The systems were chosen to represent common

execution environments and to ensure the viability of the solution across operating

systems, compilers, and hardware configurations. Four different operating systems

were used in testing: Fedora, CentOS, and Ubuntu Linux distributions and OS X.

Two servers, a desktop, and a laptop were used for testing.

The implementation was tested on multiple different machines, operating sys-

tems, etc., to ensure portability, show the problem is widespread, and determine

how effective the solution is on multiple platforms. The specific versions of gcc,

clang, automake, etc., should not have a significant impact, providing that they are

consistent across all tests on that machine, and must minimally be able to support

running Qthreads and the benchmark tests. The machines and environments provide

newer and older hardware and software with various versions of compilers. For each

of the machines, the latest hwloc version, 1.11, was compiled from source [14].
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3.2 Desktop

The desktop machine used for testing uses a Intel Core i7-960 quad core CPU with

hyperthreading, which provides eight processing units operating at 3.2 Ghz and 12

GB of DDR3 1600 RAM. The operating system is Ubuntu 14.04, with kernel 3.13.0,

and gcc version 4.8.4, fully updated as of April 17, 2016. All software used was

installed from Ubuntu’s APT repository.

3.3 Laptop

The laptop used for testing is a 2015 MacBook Pro (MBP) 15” base model. This

provides a 2.2 Ghz quad core Intel Core i7-4770HQ CPU with turbo boost up to 3.4

Ghz. This i7 also provides hyperthreading and eight processing units. The MBP has

16 GB of DDR3L 1600 RAM. The tests were run with a fully updated version of

OS X 10.11, and used tools provided by the latest XCode package, including Apple

LLVM version 7.3.0, as of April 17, 2016.

3.4 Shared Server

The shared server is a Linux server at Boise State University that is available to all

Computer Science students. It represents a common usage case of a system shared by

multiple users, where exclusive usage of the computational resources is not likely, and

thus can impact the execution time of processes owned by other users. The shared

server runs Fedora 22, with kernel 4.2.3, and has gcc version 5.1.1.

The shared server is a two-socket server with dual Intel Xeon E5-2630 CPUs, each

with six cores and hyperthreading, giving the total system 24 processing units, at 2.4
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Ghz. The shared server has 32 GB of DDR3 1600 RAM.

3.5 Dedicated Server

The dedicated server is another Linux server hosted at Boise State University that

is not shared among a large group of people, so additional activity on the system

is greatly reduced, making it a less dynamic testing environment. It has 64 GB

of DDR3 2133 RAM, and processors similar to the shared server: dual Intel Xeon

E5-2620 v3 processors, with six cores and hyperthreading, providing the system with

24 processing units at 2.4 Ghz. The dedicated server runs CentOS 6.7, with kernel

2.6.32, and gcc version 4.4.7.
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CHAPTER 4

BENCHMARKS

4.1 Benchmark Selection

The benchmarks were selected as representations of common parallel application

patterns. Unbalanced Tree Search creates a tree and visits each node, with each

node visit being a new work task. This results in a large number of small tasks with

the task computation being independent from other tasks. The High Performance

Conjugate Gradient benchmark is a serial application that parallelizes loops with a

smaller, set number of tasks, which is very common in scientific computing.

4.2 Unbalanced Tree Search

The Unbalanced Tree Search (UTS) benchmark is aimed at testing parallel processing

load balancing. UTS generates a tree with each node having a probability of being

a leaf and a branching factor. Each node performs a SHA1 hash as its work, which

is used to determine whether it is a leaf node or not. The benchmark can quickly

grow many nodes, with each node having an equal probability of producing more

work. This makes it difficult to optimize scheduling. The benchmark uses a seed

for random number generation allowing for deterministic tree generation, a requisite

feature for repeatable results.
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For all the tested implementations of UTS, every node is spawned as a task. When

a node is visited, a counter is incremented that keeps track of the total number of

nodes in the tree. The trees can grow very quickly with little variation in the branching

factor and leaf probability, which results in massive time and memory requirements.

Due to the rapid tree growth, a depth limit is additionally imposed on the trees to

limit the number of nodes in the tree. When the depth limit is reached, it forces the

current node to be a leaf node and the leaf probability routine is skipped.

The UTS benchmark was selected for testing because it produces a lot of work

to execute and generates a large number of tasks (one per node in the tree), which

keeps the processing units and the tasking scheduler busy. UTS itself does not intro-

duce significant synchronization between tasks or threads, so it does not introduce

additional jitter delays due to synchronization.

4.2.1 Test Trees

Three tree sizes were selected to be used in testing with the single tree generation

time/size selected to keep execution time reasonable, even when there are many

parallel processes generating the trees. The sizes are distinguished as small, medium,

and large. The size is adjusted by changing the branching factor and tree depths.

Table 4.1 shows the values and sizes of the trees.

Table 4.1: UTS Tree Variables

Test Branching Factor Tree Depth Number of Nodes
small 5 55 871691

medium 5 70 24938666
large 6 35 53380645
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4.3 High Performance Conjugate Gradient

High Performance Conjugate Gradient (HPCG) is a benchmark intended to behave

like complex physics simulationsi [3]. HPCG generates a 3D matrix then itera-

tively performs a set of operations on the matrix. These operations include sparse

matrix-vector multiplication, vector updates, global dot-products, and more. The

Qthreads implementation of HPCG parallelizes only the loops, making the benchmark

a sequence of parallel and serial sections.

Per the HPCG README included with the benchmark code, it is recommended

that the size of tests be based on the memory footprint of the simulation, specifically

recommending 25-75% of memory. However, in testing oversubscription, using even

just 25% of memory would reach 100% of memory with four processes. Going over

the physical memory limits, and spilling into swap space, would be too large of a

performance hit to provide usable results within a rational time frame. Instead of

basing the size on memory, a cube of size 100x100x100 elements was selected for

testing, based on the execution time for a single process, which uses approximately

400 MB of memory, ensuring all tests stay well within the memory bounds of the test

machines.
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CHAPTER 5

RESULTS

The test results for UTS show that execution times of partitioning generally approxi-

mate the Qthreads yielding option, usually executing faster than the yielding method.

On the laptop, the execution time disparity is extreme, with partitioning being much

faster. On the servers, partitioning is clearly faster on the dedicated server, but on

the shared server partitioning did not provide an advantage over yielding until twelve

or more concurrent processes were run.

5.1 Testing

The laptop and desktop were rebooted before testing to provide a fresh environment.

Testing on all machines was done “out of the box,” meaning there was no special tun-

ing done. Similarly, to keep testing representative of the average case, thread/process

priorities were not changed for the test applications. For Qthreads, hwloc was used

for the topology.

5.2 Qthreads Default Configuration

The Qthreads default configuration, compiled with no options passed to the configure

script, was tested on the desktop and it quickly became apparent that it is not

intended to handle multi-process execution, but instead is optimized for single-process
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Table 5.1: Qthreads Default vs Yielding enabled

Test Default Variance Yielding Variance
small 0.189s 0.063s 0.326s 0.032s

medium 4.321s 0.140s 8.229s 1.003s
3 small 394.939s 445.499s 0.668s 0.054s

3 medium 3.71 hours 3.79 hours 17.509s 0.151s

environments, common to high performance computing. The Qthreads default does

well with single applications, but even three concurrent processes shows severe perfor-

mance degradation. Single small tests had an average runtime of 0.189s, medium tests

had an average runtime of 4.300s, and large tests had an average runtime of 9.242s.

However, running three small-test processes simultaneously ballooned the average

time to 394.939s, and varied with a minimum time of 138.130s and a maximum time

of 583.629s. Running three medium-size processes proved even more dire, with an

average of 3.71 hours, with a minimum of 1.05 hours, and a maximum of 4.85 hours.

The difference between the minimum and maximum medium tests, 3.79 hours, and

small tests, 445.499s are larger than the averages themselves. The variability shows

that jitter is severely and nondeterministically impacting performance, and that the

architecture of Qthreads may be good for single-process performance, but it clearly

does not handle multi-process jobs well. Table 5.1 shows the compared execution

times of small and medium sized, individual, and three-process UTS tests, averaged

over eight runs on the desktop computer. The three process times are the time it

took all three processes to execute. Large tree-generating tests are not included due

to the amount of time necessary to execute three concurrent processes.

The individual runs show that multi-process execution roughly doubles the exe-

cution time due to causing excessive context switches via yielding. However, there is

an even more drastic difference when the machine is oversubscribed. The Qthreads
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default performance, when oversubscribed, is untenable, growing from 0.189s for an

individual, small test to 394.939s with just three processes, and taking almost four

hours on average for three medium-size tests. Since Qthreads provides a yielding

option, that will be the primary configuration used for comparison with partitioning.

5.3 UTS Results

5.3.1 Single UTS Process
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Figure 5.1: Single UTS process execution time using default, partition, and yielding
options on the desktop.

As was mentioned in Section 1.2.1, the yielding option adds calls to yield the rest

of the thread or processes time slice instead of spinning. While this is beneficial in

oversubscribed situations, it inhibits single-process performance.
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Table 5.2: Desktop Single Test Variance

Test Yielding Variance Partition Variance
small 0.032s 0.038s

medium 1.003s 0.090s
large 1.882s 0.607s

The single-process tests are the average of eight runs of tree generation for each

tree size. Figure 5.1 shows the Qthreads default single-process performance compared

to both yielding and partitioning, including the maximum and minimum execution

times. This demonstrates that the overhead introduced by the standard yielding

technique is substantial, while the single-process overhead of the partition scheme is

minimal. Table 5.2 shows the variance between minimum and maximum execution

times. Partitioning shows much less variance, which could indicate that there is less

jitter due to the partitioning. However, the execution time difference makes yielding

more susceptible to jitter just by having a larger time window available for system

disruption.

The overhead of the startup and shutdown of partitioning was timed to measure

the average overhead for a single process. The combined overhead averaged between

91 to 277 microseconds across the four test systems. Table 5.3 shows the combined

startup and shutdown times of each system, over eight single-process UTS tests.

Table 5.3: Single Process Partitioning Overhead

System Partitioning Overhead
desktop 127µs
laptop 277µs

shared server 91µs
dedicated server 120µs
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5.4 Three UTS Processes
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Figure 5.2: Total execution time of three UTS processes, in the small configuration,
using partitioning and yielding. The black vertical lines represent the range of result
values. Due to the variance of the execution times, the laptop results are shown in
Figure 5.4.

For testing three UTS processes, three small-tree tests, three medium-tree tests,

and three large-tree tests were run together. These tests were run on all four test

systems.

Figure 5.2 shows the results of the three UTS process, small tree tests on the

desktop, shared server, and dedicated server. Both the desktop and dedicated server

show a performance edge to partitioning. However, the shared server had high

variability with partitioning and was slower on average than yielding.

Figure 5.3 shows the results of the large tree, three process UTS experiment.
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Figure 5.3: Total execution time of three processes, in the large configuration, using
partitioning and yielding. The black vertical lines represent the range of result values.

5.4.1 Laptop UTS Oversubscription

The laptop separates itself here in multi-process execution time, and thus is not

included in Figure 5.3 and Figure 5.2, to prevent the laptop results from skewing

the scale of the rest of the results. Apple OS X’s scheduler is based on Mach and

BSD, and is derived directly from the scheduler in OSFMK 7.3. Apple states that it

will lower the priority of compute-bound processes and threads to avoid locking up

the system and prevent starvation of I/O bound threads [5]. This results in erratic

and poor performance for the oversubscription tests. Despite a reboot to start with

a fresh system, and preventing as many startup processes as possible, the yielding

configuration fared poorly. This did not have any apparent affect on the results for the

partitioning configuration. Table 5.4 shows the laptop yielding and partition results.
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Table 5.4: Laptop Three UTS Process Tests

Tree Size Yielding Partition
small 6.008s 0.396s

medium 133.968s 9.130s
large 296.364s 20.043s

The OS X Activity Monitor, Figure 5.4, provides an indication that part of the

reason for the slowdown using the yielding option is that the yield calls and context

switching are dominating execution of the UTS benchmark code. Figure 5.4a shows

only roughly 20% of CPU cycles is going to user code during execution of a test with

the yielding option enabled. Compare that to Figure 5.4b, which shows almost 100%

of resources being used for user code during execution with partitioning enabled.

(a) Yielding (b) Partitioning

Figure 5.4: The OS X Activity Monitor shows full resource utilization for both tests.
However only roughly 20% is for user code when using yielding while partitioning has
almost 100% user code utilization.

5.5 UTS Scaling

In addition to the comparison results, the partitioning implementation was tested

with varying numbers of processes to test how it scales. The scaling tests were run

with the same methodology: each test result being an average comprised of eight

runs. The desktop and laptop number of processes selected for testing are two, three,

four, eight, and twelve. For the server, three, four, eight, twelve, and thirty-two



33

processes were run. The dedicated server was also tested with forty-two processes. A

forty-two process test was not run on the shared server, due to it being shared with

other students, and a forty-two process test would negatively impact anyone else on

the system.

5.5.1 Desktop UTS Scaling Results

The desktop computer showed that resource partitioning consistently improved exe-

cution time over yielding, with the exception of the four-process test. Due to worker

zero being used for all processes using partitioning, a four-process test results in three

of the processes getting two dedicated workers but, process four only gets one. This is

because worker zero is active for all processes, so worker zero is not in the partitioning

group of workers. Figure 5.5a shows the large test comparison results. Both the small

and large tests follow a similar curve, with partitioning generally being faster than

yielding by small margins, except for the four-process tests.

5.5.2 Laptop UTS Scaling Results

Similar to the three-process tests, the laptop results are heavily skewed due to its

poor performance with the yielding option. Figure 5.5b shows the large tree UTS

test comparison results. Partitioning is a clear winner, compared to yielding, in not

just execution time, but also minimizing the variance in execution time between runs.

5.5.3 Shared Server UTS Scaling Results

The results of the shared server are given in Figure 5.5c, for the large-tree UTS

test comparison results. The shared server had results inconsistent with the other
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Figure 5.5: Total execution time of large tests comparing partitioning and yielding.

machines in that it had two tests where partitioning was slower than the yielding

option.

Partitioning has lower execution time for all tests, except those with eight and

twelve processes. For the servers, twelve processes is the same issue as four processes

on the desktop described in Section 5.5.1, where the number of processes is half

the number of processing units, resulting in all but one process getting two unique

workers. However, it remains that the three, four, twenty-four, and thirty-two process

tests are clear advantages for partitioning.
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5.5.4 Dedicated Server UTS Scaling Results

Despite very similar hardware to the shared server, the dedicated server’s results are

not very similar. Figure 5.5d shows the large UTS-tree test comparison results. The

dedicated server results show a clear performance advantage to partitioning across all

tests. Since the dedicated and shared servers are so similar in hardware, the difference

between their results must be due to either other users on the shared server or the

differences in the software environments.

5.5.5 UTS Scaling Conclusion

The scaling tests show that partitioning has a strong performance advantage with

fewer processes and, with the exception of OS X, stays pretty close to the yielding

results. Since partitioning is effectively reducing parallelism available to the appli-

cations, this implies that reducing parallelism is better performing than the costs of

oversubscription. This is true even when applications are reduced to two processing

units, including worker zero, which is shared by all processes in the partitioning

scheme.

There is an interesting phenomenon in partitioning, when the number of processes

is half the number of all processing units. Instead of each process getting two

processing units, the result is that one process gets two, and the others get three,

including the shared worker zero, due to the limitation that all processes share worker

zero. The performance difference is likely a result of that imbalance, though the same

would be expected to occur when the number of processes equals the total number

of processing units, as well. In the case where the number of processes equals the

number of processing units, the amount of oversubscription is likely to the point that
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the effect of yielding does not effectively mitigate the contention, allowing partitioning

to maintain a lead by keeping contention minimal.

5.6 Partitioning with Yielding
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Figure 5.6: Total execution time of large tests on the desktop and dedicated server
comparing partitioning, yielding, and enabling both.

With partitioning, processing unit zero is still always oversubscribed, so it could

possibly benefit from using the yielding approach. If both are good separately, then

it would make sense that combining them should result in an even larger performance

increase. This was not the case. Figure 5.6 shows the combined approach on both

the desktop and dedicated server, using the large-tree tests. Mixing partitioning

and yielding resulted in the poor behavior of yielding in single-process execution,

and roughly equivalent performance to partitioning alone. Even in situations where

partitioning results in oversubscription, adding the yields did not appear to make any

real difference. Processing unit zero could still likely benefit from yielding, but that

would also introduce additional checks (branches), to ensure only processing unit zero

is yielding; this was not implemented or tested.
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5.7 OpenMP and Intel Threading Building Blocks UTS Com-

parison

In addition to testing Qthreads, Intel Threading Building Blocks and OpenMP were

tested with UTS. Each was tested with single-process executions, for a baseline, then

tested with three-process, three tree tests, then run with two, four, eight, and twelve

binomial tree processes. These tests were run on the desktop computer.
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Figure 5.7: Large test results comparison with TBB, OpenMP, Qthreads oversub-
scribed, and Qthreads partitioning showing a comparison of raw execution time and
execution time normalized to single-process execution time.

OpenMP was used without setting any environment variables for the tests, which

should cause it to default to the number of processing units. However, its processing

unit utilization was inconsistent. The OpenMP processes generally restricted them-

selves to only four processing units at a time for a single process, even when setting the

OpenMP environment variable to use more threads. This behavior was observed on

multiple machines to confirm it was not isolated to the desktop. Only using roughly

four processing units at a time hurt the OpenMP performance considerably for the

individual tests, but had the unexpected consequence of helping it in oversubscribed



38

situations.

Intel’s Threading Building Blocks (TBB) offering clearly has a lot of work put

into it, and the performance shows. Figure 5.7 shows the curves for OpenMP, TBB,

Qthreads with yielding, and Qthreads with partitioning on the desktop computer

in both raw execution time and normalized on single process execution time. The

normalized graph shows TBB is linear and partitioning is super-linear. However,

the normalized graphs for OpenMP and yielding, on the surface, show exceptional

performance but that is an artifact of their poor single-process performance. TBB

starts off with a sizeable performance advantage over Qthreads, on single-process

execution, and maintains that lead through all testing. Monitoring the processing-unit

load during OpenMP execution revealed that OpenMP was limited to the number

of physical cores. It was not pinning processes to those cores causing execution to

migrate across processing units, which is responsible for OpenMP having over seven

seconds in variance on its eight large-test runs. The OpenMP curve shows that it

struggles in single process performance, due to not utilizing all the processing units,

but stays relatively flat as the number of processes increase.

While TBB is still affected by oversubscription, its performance edge on single-

process performance carries over to oversubscribed situations as well. So, while

Qthreads partitioning was not able to beat TBB or OpenMP oversubscribed perfor-

mance, the curves of the tests are similar between partitioning and TBB. It is not clear

whether OpenMP and TBB could benefit from partitioning, especially considering

OpenMP is somewhat partitioning itself. However, compared to yielding, partition

tracks much closer with TBB’s performance, due to not having the performance hits

in single and two process tests.



39

5.8 Coming and Going

One of the benefits of partitioning is its dynamic nature, making it a better approach

than manually tuning processes because processes can start with full system resources,

give some up when another process starts, then regain them when the second process

ends. To show this, a few tests were constructed that start with a large test then

have additional tests added at intervals to see how the performance fared.

The interspersed process tests are:

• LM: Start a large test, wait for three seconds, then start a medium test.

• LSSS: Start a large test, wait three seconds, start a small test, wait two seconds,

start another small test, wait two more seconds and start a final small test.

• LMMM: Start a large test, wait three seconds, start a medium test, wait two

seconds, start another medium test, wait two more seconds and start a final

medium test.

• LLLL: Start a large test, wait three seconds, start a large test, wait two seconds,

start another large test, wait two more seconds and start a final large test.

Table 5.5: Interspersed Tests

Test Name Partition Yielding
LM 10.843s 18.799s

LSSS 23.682s 20.489s
LMMM 15.218s 18.904s
LLLL 24.233s 27.084s

Table 5.5 shows the results of these tests with partitioning and yielding, run on

the desktop computer, averaged over eight runs.
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These results are expected, with partitioning generally being faster, which is

consistent with other desktop results. However, the test with three small-tests in-

terspersed resulted in very poor performance and reveals a big weakness in the

partitioning: signal thrashing. What would happen is one small test would end

at roughly the same time another one was starting, causing a lot of jitter due to

signals, and also causing successive repartitions, which would harm the large test due

to multiple repartitions.

5.9 HPCG Results
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Figure 5.8: Total execution times of HPCG benchmark on the desktop comparing
Qthreads default, partitioning, and yielding.

The HPCG results show a different parallel pattern than the UTS benchmark.

UTS is a constant spawning of tasks and their execution. HPCG has serial sections
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then parallelizes loops. Since HPCG is not alway parallel, the contention for resources

is substantially reduced, because the parallel loop sections are unlikely to execute at

exactly the same times, and thus won’t likely contend for resources.
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Figure 5.9: Total execution times of HPCG benchmark on the laptop comparing
Qthreads default, partitioning, and yielding.

Partitioning reduces parallelism for the application’s lifetime, regardless of the

actual compute-resource contention. In the case of HPCG, this could work against

partitioning in specific cases where the parallel loops of the concurrent processes do

not overlap.

All the HPCG tests were run with one, two, four, and eight processes with the

two servers additionally running twelve-process tests. Each test was run eight times,

and the results are the average execution time of all the processes. In Section 5.2, the

Qthreads default configuration was shown to perform very poorly in oversubscribed

situations. However, HPCG’s different model of parallelism works better with the
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default configuration. Thus, the results include Qthreads default, the yielding option,

and the partitioning scheme.

Figure 5.8 shows the HPCG results on the desktop. The yielding option is fastest

for single process and is a very fast solution throughout. Partitioning is fastest for

two and four processes, but is slower than the yielding option for one and eight.
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Figure 5.10: Total execution times of HPCG benchmark on the shared server
comparing Qthreads default, partitioning, and yielding.

Figure 5.9 shows the results for the laptop. Partitioning is fastest for single and

two process execution, but the yielding option has a strong performance advantage,

compared to partitioning and the default configuration, at four and eight processes.

The shared server HPCG results can be found in Figure 5.10. On the shared server,

all three were equivalent for single process. Partitioning and the yielding option were

near identical for two and four processes. Eight process execution is dominated by
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the yielding option, with partitioning still being faster than the default, but a distant

second.
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Figure 5.11: Total execution times of HPCG benchmark on the dedicated server
comparing Qthreads default, partitioning, and yielding.

The dedicated server blazed through all the tests with single and two process being

essentially a three-way tie. Four and eight process saw the default and partitioning be

fastest, respectively, but not by significant margins. However, there was a lot of time

variance for the yielding option, with four and eight processes, though its average was

close to the others.

Partitioning does not show as drastic or consistent an improvement in execution

time as it did with UTS. The yielding option was especially dominant in these

tests, particularly in the eight-process test. However, partitioning still provides an

improvement over the default configuration, and was fastest in some instances. This

is likely due to HPCG’s model of parallelism, which does not result in as much
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contention for resources as a benchmark like UTS. Instead, HPCG benefits from all

processes being able to use all cores, since the contention does not increase with the

number of processes as rapidly as UTS.

5.10 Multi-User

An additional user account was created on the desktop computer to test if the shared

memory section could be used across user accounts. From another computer, two

separate accounts were logged into on the desktop, via ssh, and each one ran a single

UTS large test with the default configuration and then with partitioning. The default

configuration execution times were consistent with the previous desktop results.

Running with partitioning enabled had the same result. One issue was that of file

permissions. While the shared memory section permission bits were set correctly, the

two processes were still not able to both open the shared memory section. Putting

both users in the same group fixed this. However, there remained another issue: users

cannot send signals to processes owned by other users.

It may be possible to set the CAP KILL capability on the processes, or find some

other way around this limitation. However, the concept of being able to send signals

to another user’s processes is probably a bad idea and has many security implications.

By changing the partition model to polling on changes in the shared memory section,

sending signals could be avoided completely, but that would harm performance to

gain a functionality that would be little, if ever, used.

It is possible to use a pthread cond, instead of signals, for the notifications to

other processes for repartitioning. However, this would require an additional thread

for the conditional as well as storing a mutex and pthread cond variable in the
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partitioning shared memory. Additionally, the use of pthread mutexes for inter-

process signaling is not supported on some common POSIX operating systems, such

as Mac OS X.
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CHAPTER 6

FUTURE WORK

6.1 Code

The implementation is complete and functional, however that does not mean the

work is completely finished. The following items are still left to complete regarding

the code.

• Logging: Simple logging to a file was implemented solely for the partitioning.

Qthreads provides its own logging structure, so the partition implementation

should be converted to use the regular Qthreads logging infrastructure.

• Merge with Qthreads Github repository: The code has not been merged into

the Sandia National Labs git repository on Github.

6.2 Research

6.2.1 Resource Donation

Partitioning allows processes to determine the number of active workers they should

have based on the number of participating processes running. However, the number

of active workers remains tied to the number of participating processes. There are

scenarios where a process may run out of work, or be executing a serial section, and
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thus its workers are sitting idle. Since the process could be aware of its resource

utilization, and since the partitioning scheme allows for communication across pro-

cesses, it is possible a process with underutilized workers could donate a worker to

a process that is in need of workers. Since the donating process would be the one

with underutilized workers, the overhead of selecting a participating process to donate

to would have little impact on the donating process. Additionally, since a donation

would not be a repartition, it would have very little impact on the process receiving

the donation.

Resource donation can happen when a worker doesn’t have work to perform

and can then donate a resource to another process, as long as the donating process

retains at least one worker after the donation. To perform this, the donating process

deactivates the worker to be donated, then iterates over the process array in shared

memory until it finds a negative value (indicating that process is in need of resources).

Once the receiving process is identified, the donating process copies the receiving

processes’ shared memory array entry, then sets the MSB to zero, and sets the worker

ID field to the worker being donated. Finally, a compare and swap is done with the

original value. If the compare and swap is successful, the donating process will then

send SIGUSR1 to the receiving process to notify it that it can activate the worker.

Additionally, when a process finishes execution and calls finalize on the Qthreads

library, the process will signal for a repartition.

6.2.2 Worker Allocation

The current worker allocation is suboptimal on machines with multiple NUMA

nodes/shepherds, as described in Section 2.5. The current calculation from worker

ID to shepherd and processing unit indices is relatively simple. Converting the
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calculation to change the grouping such that n consecutive worker IDs are mapped to

consecutive processing units on a single shepherd, only crossing shepherd boundaries

as necessary, instead of a round-robin shepherd assignment should not be necessarily

difficult, but needs thorough testing for consistency and robustness across different

topologies.

6.2.3 Unshackle Worker Zero

All processes being required to keep worker zero active was a strong restriction that

undoubtedly hurt performance, due to oversubscription of worker zero. Allowing

processes to enable and disable worker zero would reduce contention for all processes.

Disabling worker zero may be possible if it is re-enabled before Qthreads is shut down.

The first thing the Qthreads finalize function does is identify worker zero and only

worker zero completes the cleanup using the parent thread. Thus, worker zero would

need to be re-enabled before the Qthreads finalize function is called and the parent

thread needs to be migrated back to worker zero.

Additionally, the protections around disabling worker zero also apply to shepherd

zero. If the worker allocation from Section 6.2.2 is implemented, this could result in

a shepherd being disabled, which should be a better solution, but will certainly have

consequences not yet identified.

6.2.4 Benchmarks and Testing

There is always more testing to be done. This work focused on the UTS and HPCG

benchmarks for testing, but there are many other benchmarks that could be useful,

as well as different configurations of UTS and HPCG, and testing on more machines

and topologies. Another benchmark that would be relatively easy to test is the
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Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) [8],

which is implemented with Qthreads in the benchmarks directory.

6.2.5 Tuning

There are some aspects of the partition implementation that could be fine tuned for

better performance. For example, it allows for 511 process entries in the shared data

structure, which means that for every partition and check that other processes are

still active (error handling) the iteration over the array is all 511 elements. However,

it is unlikely that this will be run in an environment with 511 processes on a single

machine (in fact, server testing only reached a maximum of 42 processes) so that

iterating over the shared array can be done more quickly. 511 was chosen to use a

full page of memory, and provide scalability, so further testing could be done to bring

this number down.

Similarly, the shared array uses int64 t for the array data, which allows for

extensibility such as, but not limited to, resource donation, even though process IDs

are a uint32 t. Changing the type to a uint32 t would make the data array much

more compact, allowing either further scaling or just reducing the memory footprint.

However, this does limit the extensibility, unless the shared data structure is altered.

6.2.6 Error Handling

There are many ways to handle errors in the partition implementation. The method

currently employed was chosen for ease of implementation. However, it is only run

when a process starts or exits cleanly, meaning processing units could remain allocated

to a process that crashed and thus no longer exists. Additionally, the current error

handling is based on sending signals, which increases jitter and can hurt performance.
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This has no easy solution, and it may be worthwhile to explore user-selectable error-

handling policies.
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CHAPTER 7

CONCLUSION

This work conclusively shows that partitioning computational resources across con-

current parallel applications using the same tasking library shows an improvement in

execution time. For the UTS benchmark, the performance of the default Qthreads

configuration in a multi-process environment was severely impacted. However, the

yielding feature brings the execution time closer to partitioning, even out-performing

it in certain cases. For the HPCG benchmark, partitioning still performs very well,

being the fastest in many cases, but cannot keep up with the yielding option in the

eight-process tests. The yielding option brings downsides, such as poor single-process

performance, and turning yielding on requires recompiling the tasking library. In

contrast, partitioning maintains default Qthreads performance for single-process ex-

ecution and often better performance than yielding, making it an ideal feature that

can be turned on and left on with no discernible downside compared to the other

options.

Partitioning was thoroughly tested with the UTS and HPCG benchmarks on both

servers and personal machines, with four different operating systems and different

environments and compilers. It was tested with single-process execution all the

way up to 42 concurrent processes, resulting in almost a complete loss of parallel

ability and having almost all processing units being oversubscribed, and still returned
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performance increases over the yielding feature by reducing resource contention.

Partitioning has many uses and allows people to run concurrent parallel applica-

tions without trying to manually account for oversubscription and without sacrificing

performance when not oversubscribed.
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Kubiatowicz. Tessellation: Space-time partitioning in a manycore client os.
In Proceedings of the First USENIX Conference on Hot Topics in Parallelism,
HotPar’09, pages 10–10, Berkeley, CA, USA, 2009. USENIX Association.

[12] POSIX Programmer’s Manual. PTHREAD MUTEX LOCK(P), 2003. Accessed:
2016-03-28.

[13] POSIX Programmer’s Manual. SEM OVERVIEW(7), May 2012. Accessed:
2016-03-28.

[14] Open MPI. Portable hardware locality (hwloc). https://www.open-mpi.org/

projects/hwloc/. Accessed: 2016-04-14.

[15] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith.
Multicore resource management. IEEE Micro, 28(3):6–16, May 2008.

[16] Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, and Jan F. Prins.
Scheduling task parallelism on multi-socket multicore systems. In Proceedings of
the 1st International Workshop on Runtime and Operating Systems for Super-
computers, ROSS ’11, pages 49–56, New York, NY, USA, 2011. ACM.

[17] OpenMP. Openmp application programming interface. http://www.openmp.

org/mp-documents/openmp-4.5.pdf. Accessed: 2016-02-14.

[18] J. H. Schonherr, J. Richling, and H. U. Heiss. Dynamic teams in openmp. In
Computer Architecture and High Performance Computing (SBAC-PAD), 2010
22nd International Symposium on, pages 231–237, Oct 2010.

[19] K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for programming
with millions of lightweight threads. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, pages 1–8, April 2008.



55

APPENDIX A

IMPLEMENTATION CODE

Listing A.1 shows the core implementation code for the partitioning. The partitioning

has an initialization called at startup that creates the shared memory section and then

signals the other participating processes to partition. Similarly, there is a cleanup

function that also tells the other participating processes to partition but unlinks the

shared memory section and closes all open files. These functions are called in the

Qthreads initialize and finalize functions, respectively. This file also contains the

signal handling for the partition scheme, the struct held in the shared memory, and

the first pass at two functions for resource donation beyond just the partitioning.

Beyond the partition source file, there were some minor updates to the Qthreads

code. Listing A.2 shows the updated wait-loop uses a blocking read to wait for parti-

tioning instead of the spinlock. Similarly, Listing A.3 shows the updated enable worker

function that uses a write to a pipe to enable the worker.

This implementation could be reused for other applications and tasking libraries

with little modification. However, it was necessary to use some data internal to

Qthreads so this is specific to the Qthreads tasking library and is not a generic

implementation.

Listing A.1: partition.c

1 #include <stdio.h>

2 #include <stdlib.h>
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3 #include <sys/mman.h>

4 #include <fcntl.h>

5 #include <unistd.h>

6 #include <sys/stat.h>

7 #include <inttypes.h>

8 #include <errno.h>

9 #include <signal.h>

10 #include <unistd.h>

11

12 #include ‘‘partition.h’’

13 #include ‘‘qthread.h’’

14 #include ‘‘qt_shepherd_innards.h’’

15 #include ‘‘qthread_innards.h’’

16

17 // used 511 as limit to keep shared data structure within a single page.

18 #define MAX_FIM_PROC 511

19 #define VERBOSE 0

20 // procs encoding:

21 // 63 status

22 // 32:62 mailbox

23 // 0:31 pid

24

25 // bit encodings

26 #define FIM_MSB_0 0x7FFFFFFFFFFFFFFF

27 #define FIM_MSB_1 0x8000000000000000

28 #define FIM_LOW 0x00000000FFFFFFFF

29 #define FIM_HIGH 0xFFFFFFFF00000000

30

31 typedef struct fim_t {

32 uint64_t num_procs;

33 int64_t procs[MAX_FIM_PROC ];

34 }fim_t;

35

36 // variables

37 static uint32_t my_rank;

38 static int fd;

39 static int inited = 0;

40 static uint32_t num_active_procs = 0;

41 static fim_t *fim = NULL;

42 // fim_logging

43 FILE *fim_log = NULL;

44

45 // functions

46 static void signal_handler(int);

47 static void donate_all(void);

48 static void get_resources(void);

49 static void pulse(void);

50 static void init_repart(void);

51

52 int init_partition (){

53 // STARTUP
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54 // init pipes

55 for (int x = 0; x < qlib ->nshepherds; x++) {

56 for (int y = 0; y < qlib ->nworkerspershep; y++) {

57 int fids [2];

58 if (pipe(fids) < 0) {

59 fprintf(stderr , ’’Unable to create partition pipes , reverting to default behavior\n’’);

60 return -1;

61 }

62 qlib ->shepherds[x]. workers[y]. read_pipe_fd = fids [0];

63 qlib ->shepherds[x]. workers[y]. write_pipe_fd = fids [1];

64 fcntl(qlib ->shepherds[x]. workers[y]. write_pipe_fd , F_SETFL , O_NONBLOCK);

65 }

66 }

67 // setup signal handlers

68 if (signal(SIGUSR1 , signal_handler) == SIG_ERR) {

69 printf(‘‘unable to receive signals (1)\n’’);

70 return -1;

71 }

72 if (signal(SIGUSR2 , signal_handler) == SIG_ERR) {

73 printf(‘‘unable to receive signals (2)\n’’);

74 return -1;

75 }

76 // create and init shared memory

77 if (VERBOSE) {

78 printf(‘‘opening shared memory\n’’);

79 }

80 if((fd = shm_open(‘‘/fim’’, O_RDWR | O_CREAT , 0666)) < 0) {

81 printf(‘‘fd is negative\n’’);

82 return -1;

83 }

84 struct stat *stats = calloc(1, sizeof(struct stat));

85 fstat(fd, stats);

86 if (0 == stats ->st_size) {

87 // printf(‘‘fd is %d, filesize is %lld\n’’, fd , stats ->st_size);

88 if (-1 == ftruncate(fd, sizeof(fim_t))) {

89 // printf(‘‘ftruncate failed %s\n’’, strerror(errno));

90 // return -1;

91 }

92 }

93 free(stats);

94 fim = mmap(NULL , sizeof(fim_t), PROT_READ | PROT_WRITE , MAP_SHARED , fd , 0);

95 if(MAP_FAILED == fim) {

96 printf(‘‘mmap failed\n’’);

97 return -1;

98 }

99 pid_t my_pid = getpid ();

100 // effectively ignore ret val since that ’s not guaranteed to be rank

101 my_rank = __sync_fetch_and_add (&(fim ->num_procs) ,1);

102 // There may be gaps in the array from processes

103 // so try to fill those first

104 my_rank = 0;
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105 do {

106 if (__sync_bool_compare_and_swap(

107 &fim ->procs[my_rank], 0, my_pid)) {

108 if (VERBOSE) {

109 printf(‘‘my rank is %d and my pid is %d\n’’, my_rank , my_pid);

110 }

111 break;

112 }

113 my_rank ++;

114 } while (1);

115

116 // setup fim_log

117 if (VERBOSE) {

118 char filename [32];

119 sprintf(filename , ‘‘fim%d.log’’, my_rank);

120 printf(‘‘logging to %s\n’’, filename);

121 fim_log = fopen(filename , ‘‘w+’’);

122 }

123 if (1 < fim ->num_procs) {

124 init_repart ();

125 }

126 inited = 1;

127 if (VERBOSE){

128 fprintf(fim_log ,‘‘fim has initialized properly\n’’);

129 }

130 return 0;

131 }

132

133 void init_repart () {

134 int num_dead = 0;

135 for (int proc_idx = 0; proc_idx < MAX_FIM_PROC; proc_idx ++) {

136 if (proc_idx == my_rank || 0 == fim ->procs[proc_idx ]) {

137 continue;

138 }

139 // pid section should never change so atomic unnecessary

140 pid_t pid = fim ->procs[proc_idx] & FIM_LOW;

141 if (0 != kill(pid , SIGUSR2)) {

142 if (VERBOSE) {

143 fprintf(fim_log , ‘‘signal to %d failed. %s\n’’, pid , strerror(errno));

144 }

145 fim ->procs[proc_idx] = 0;

146 num_dead ++;

147 proc_idx = 0;

148 } else {

149 if (VERBOSE) {

150 fprintf(fim_log , ‘‘signal to %d succeeded .\n’’, pid);

151 }

152 }

153 if (VERBOSE) {

154 fflush(fim_log);

155 }
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156 }

157 __sync_sub_and_fetch (&(fim ->num_procs),num_dead);

158 get_resources ();

159 }

160

161 static uint32_t get_raw_index () {

162 int raw_index = 0;

163 int x =0;

164 while (x != my_rank) {

165 if (0 != fim ->procs[x]) {

166 raw_index ++;

167 }

168 x++;

169 }

170 return raw_index;

171 }

172

173 void get_resources () {

174 num_active_procs = 0;

175 if (VERBOSE){

176 fprintf(fim_log ,‘‘getting resources\n’’);

177 fflush(fim_log);

178 }

179 // -1 to account for 0,0 required for all processes

180 int total_pu = (qlib ->nshepherds * qlib ->nworkerspershep) - 1;

181 if (! total_pu) {

182 return;

183 }

184 int expected_recs = total_pu / fim ->num_procs;

185 if (1 > expected_recs) {

186 expected_recs = 1;

187 set_needy ();

188 //+1 to shift off 0,0

189 int gworker = (get_raw_index () % total_pu) + 1;

190 for (int x = 0; x < qlib ->nshepherds; x++) {

191 for (int y = 0; y < qlib ->nworkerspershep; y++) {

192 if (0 == x && 0 == y) {

193 continue;

194 }

195 int curr_id = qlib ->shepherds[x]. workers[y]

196 .packed_worker_id;

197 if (curr_id == gworker) {

198 if (VERBOSE) {

199 fprintf(fim_log , ‘‘enabling %d\n’’, curr_id);

200 fflush(fim_log);

201 }

202 qthread_enable_worker(gworker);

203 } else {

204 if (VERBOSE) {

205 fprintf(fim_log , ‘‘disabling %d\n’’, curr_id);

206 fflush(fim_log);
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207 }

208 qthread_disable_worker(curr_id);

209 }

210 }

211 }

212 qthread_enable_worker(gworker);

213 num_active_procs ++;

214 } else {

215 int pu_mod = total_pu % fim ->num_procs;

216 uint32_t raw_rank = get_raw_index ();

217 // add any extra workers to processes in order of availability

218 expected_recs += (raw_rank < pu_mod) ? 1 : 0;

219 int temp_rank = raw_rank * expected_recs;

220 if (raw_rank >= pu_mod) {

221 // account for the mod cpus

222 temp_rank += pu_mod;

223 }

224 //+1 to shift off 0,0

225 int gworker = (temp_rank % total_pu) + 1;

226 int curr_id = 1;

227 for (int x = 0; x < qlib ->nshepherds; x++) {

228 for (int y = 0; y < qlib ->nworkerspershep; y++) {

229 if (0 == x && 0 == y) {

230 continue;

231 }

232 if (gworker == curr_id && expected_recs > 0) {

233 if (VERBOSE) {

234 fprintf(fim_log , ’’enabling %d\n‘‘, curr_id);

235 fflush(fim_log);

236 }

237 qthread_enable_worker(curr_id);

238 gworker ++;

239 num_active_procs ++;

240 expected_recs --;

241 } else {

242 if (VERBOSE) {

243 fprintf(fim_log , ’’disabling %d\n‘‘, curr_id);

244 fflush(fim_log);

245 }

246 qthread_disable_worker(curr_id);

247 }

248 curr_id ++;

249 }

250 }

251 }

252 if (VERBOSE){

253 fprintf(fim_log ,‘‘%u received resources , total procs: %d\n’’, my_rank , num_active_procs);

254 fflush(fim_log);

255 }

256 }

257
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258 int donate(int64_t proc_unit_id){

259 if (1 >= num_active_procs || 0 == proc_unit_id) {

260 // fail , can ’t have zero resources and can ’t disable 0,0

261 return 1;

262 }

263 fim ->procs[my_rank] = fim ->procs[my_rank] & FIM_MSB_0;

264 int proc_idx = 0;

265 for (int x = 0; x < fim ->num_procs; x++) {

266 while (0 == fim ->procs[proc_idx ]) {

267 proc_idx ++;

268 }

269 if (0 > fim ->procs[proc_idx ]) {

270 int64_t old_val = fim ->procs[proc_idx ];

271 pid_t pid = fim ->procs[proc_idx] & FIM_LOW;

272 int64_t new_val = fim ->procs[proc_idx] | (proc_unit_id << 32);

273 if(__sync_bool_compare_and_swap (&fim ->procs[proc_idx], old_val , new_val)){

274 if (0 == kill(pid , SIGUSR1)) {

275 qthread_disable_worker(proc_unit_id);

276 num_active_procs --;

277 if (VERBOSE){

278 fprintf(fim_log ,‘‘sending donation , total procs: %d\n’’, num_active_procs);

279 }

280 return 0;

281 } else {

282 fim ->procs[proc_idx] = 0;

283 __sync_sub_and_fetch(

284 &(fim ->num_procs) ,1);

285 init_repart ();

286 }

287 }

288 }

289 }

290 // no needy proc found , no donation occurred

291 return 1;

292 }

293

294 void donate_all () {

295 if (VERBOSE){

296 fprintf(fim_log ,‘‘%u shutting down , final total procs: %d\n’’, my_rank , num_active_procs);

297 }

298 fim ->procs[my_rank] = fim ->procs[my_rank] & FIM_MSB_0;

299 int curr_proc = 0;

300 int first = 1;

301 for (int x = 0; x < qlib ->nshepherds; x++) {

302 for (int y = 0; y < qlib ->nworkerspershep; y++) {

303 // skip 0,0 because it can ’t be disabled

304 if (1 == first) { first = 0;

305 continue;

306 }

307 if (qlib ->shepherds[x]. workers[y]. active) {

308 if (VERBOSE) {
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309 fprintf(fim_log ,‘‘%u sending resource %d\n’’, my_rank ,

310 qlib ->shepherds[x]. workers[y]. packed_worker_id);

311 }

312 while (curr_proc == my_rank || 0 == fim ->procs[curr_proc ]) {

313 curr_proc ++;

314 }

315 if (curr_proc >= fim ->num_procs) {

316 curr_proc = curr_proc % fim ->num_procs;

317 }

318 int64_t old_val = fim ->procs[curr_proc ];

319 pid_t pid = fim ->procs[curr_proc] & FIM_LOW;

320 uint64_t proc_unit_id =

321 qlib ->shepherds[x]. workers[y]. packed_worker_id;

322 int64_t new_val = fim ->procs[curr_proc] | (proc_unit_id << 32);

323 if(__sync_bool_compare_and_swap (&fim ->procs[curr_proc], old_val , new_val)){

324 if (0 == kill(pid , SIGUSR1)) {

325 qthread_disable_worker(qlib ->shepherds[x]. workers[y]. packed_worker_id);

326 num_active_procs --;

327 curr_proc ++;

328 } else {

329 fim ->procs[curr_proc] = 0;

330 __sync_sub_and_fetch(

331 &(fim ->num_procs), 1);

332 init_repart ();

333 }

334 }

335 }

336 }

337 }

338 }

339

340 void pulse() {

341 if (VERBOSE) {

342 fprintf(fim_log ,‘‘\n\n%u sending pulse\n\n’’, my_rank);

343 fflush(fim_log);

344 }

345 int curr_proc = 0;

346 for (int curr_proc = 0; curr_proc < MAX_FIM_PROC; curr_proc ++) {

347 if (0 == fim ->procs[curr_proc] || my_rank == curr_proc) {

348 continue;

349 }

350 pid_t pid = fim ->procs[curr_proc] & FIM_LOW;

351 if (0 > fim ->procs[curr_proc ]) {

352 fim ->procs[curr_proc] = pid;

353 fim ->procs[curr_proc] |= FIM_MSB_1;

354 } else {

355 fim ->procs[curr_proc] = pid;

356 }

357 if (0 != kill(pid , SIGUSR1)) {

358 fim ->procs[curr_proc] = 0;

359 __sync_sub_and_fetch (&(fim ->num_procs) ,1);
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360 init_repart ();

361 break;

362 }

363 curr_proc ++;

364 }

365 }

366

367 void set_needy () {

368 int64_t newval = fim ->procs[my_rank] | FIM_MSB_1;

369 int64_t oldval = fim ->procs[my_rank] & FIM_MSB_0;

370 if (__sync_bool_compare_and_swap (&fim ->procs[my_rank], oldval , newval)) {

371 pulse();

372 if (VERBOSE) {

373 fprintf(fim_log , ‘‘set_needy\n’’);

374 }

375 }

376 }

377

378 int cleanup_partition (){

379 if (VERBOSE) {

380 fprintf(fim_log ,‘‘\n\n%u shutting down\n\n’’, my_rank);

381 fflush(fim_log);

382 }

383 fim ->procs[my_rank] = 0;

384 uint64_t active = __sync_sub_and_fetch (&(fim ->num_procs) ,1);

385 if (0 < fim ->num_procs) {

386 if (VERBOSE) {

387 fprintf(fim_log ,‘‘%d initing repartition\n’’, my_rank);

388 }

389 for (int proc_idx = 0; proc_idx < MAX_FIM_PROC; proc_idx ++) {

390 if (0 == fim ->procs[proc_idx ]) {

391 continue;

392 }

393 // pid section should never change so atomic unnecessary

394 pid_t pid = fim ->procs[proc_idx] & FIM_LOW;

395 if (0 != kill(pid , SIGUSR2)) {

396 // clean up dead procs

397 fim ->procs[proc_idx] = 0;

398 __sync_sub_and_fetch(

399 &(fim ->num_procs), 1);

400 }

401 }

402 }

403 if (VERBOSE){

404 fprintf(fim_log ,‘‘num active is now %’’PRId64 ‘‘\n’’, active);

405 }

406 close(fd);

407 if (VERBOSE) {

408 fprintf(fim_log ,‘‘%d closing worker pipes\n’’, my_rank);

409 }

410 for (int x = 0; x < qlib ->nshepherds; x++) {
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411 for (int y = 0; y < qlib ->nworkerspershep; y++) {

412 close(qlib ->shepherds[x]. workers[y]

413 .read_pipe_fd);

414 close(qlib ->shepherds[x]. workers[y]

415 .write_pipe_fd);

416 }

417 }

418 if (VERBOSE && fim_log) {

419 fclose(fim_log);

420 }

421 shm_unlink(‘‘/fim’’);

422 return 0;

423 }

424

425 void signal_handler(int sig) {

426 if (SIGUSR1 == sig) {

427 if (! inited) {

428 return;

429 }

430 int64_t my_val = fim ->procs[my_rank ];

431 if (VERBOSE){

432 fprintf(fim_log ,‘‘RECEIVED SIGUSR1\n\n’’);

433 }

434 my_val &= FIM_MSB_0;

435 // get process unit num

436 uint32_t pu_num = (( my_val & FIM_HIGH) >> 32);

437 if (0 == pu_num) {

438 if (VERBOSE) {

439 fprintf(fim_log , ‘‘SIGUSR1 was 0\n’’);

440 fflush(fim_log);

441 }

442 return;

443 }

444 // use pu_num resource

445 qthread_enable_worker(pu_num);

446 num_active_procs ++;

447 if (VERBOSE){

448 fprintf(fim_log ,‘‘receiving donation %d, total procs: %d\n’’, pu_num , num_active_procs);

449 }

450 } else if (SIGUSR2 == sig) {

451 if (! inited) {

452 return;

453 }

454 if (VERBOSE){

455 fprintf(fim_log , ‘‘RECEIVED SIGUSR2\n\n’’);

456 }

457 get_resources ();

458 }

459 }
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Listing A.2: qthread.c

1 while (! QTHREAD_CASLOCK_READ_UI(me_worker ->active)) {

2 #ifdef HAVE_PARTITION

3 qt_spawncache_flush(threadqueue);

4 char buf [2];

5 if (read(me_worker ->read_pipe_fd , buf , sizeof(buf)) < 0) {

6 break;

7 }

8 #else

9 SPINLOCK_BODY ();

10 #endif

11 }

Listing A.3: worker.c

1 void API_FUNC qthread_enable_worker(const qthread_worker_id_t w)

2 {

3 assert(qthread_library_initialized);

4

5 unsigned int shep = w % qlib ->nshepherds;

6 unsigned int worker = w / qlib ->nshepherds;

7

8 assert(shep < qlib ->nshepherds);

9

10 if (worker == 0) {

11 qthread_enable_shepherd(shep);

12 }

13 qthread_debug(SHEPHERD_CALLS , ‘‘began on shep(%i)\n’’, shep);

14 if (worker < qlib ->nworkerspershep) {

15 qthread_internal_incr (&(qlib ->nworkers_active), &(qlib ->nworkers_active_lock), 1);

16 #ifdef HAVE_PARTITION

17 __sync_bool_compare_and_swap (&qlib ->shepherds[shep]. workers[worker ].active , 0, 1);

18 if (write(qlib ->shepherds[shep]. workers[worker ]. write_pipe_fd , ‘‘\0’’, 1) < 0) {

19 qthread_debug(SHEPHERD_CALLS , ‘‘write failed in partition\n’’);

20 }

21 #else

22 (void)QT_CAS(qlib ->shepherds[shep]. workers[worker ].active , 0, 1);

23 #endif

24 }

25 }




